

WOLFRAM-KUPFER (WCU)

Wolfram-Kupfer (WCu) ist ein Verbundwerkstoff mit heterogenem Gefüge. Typischerweise wird durch Pressen und Sintern von Wolfram-Pulver ein poröser Rohling hergestellt. Die verbliebenen Poren werden durch Tauchen in flüssigem Kupfer verschlossen (Infiltration). Daneben kann WCu auch über Flüssigphasen-Sintern hergestellt werden. Je nach Korngröße des W-Pulvers sowie der Press- und Sinterparameter kann ein unterschiedlicher Gehalt von Wolfram bzw. Kupfer eingestellt werden. Wolfram-Kupfer vereint viele typische Eigenschaften der Einzelelemente Wolfram und Kupfer, so z. B. die Härte, Verschleiß- und Abbrandfestigkeit von Wolfram mit der guten elektrischen und thermischen Leitfähigkeit des Kupfers.

Verwendet wird Wolfram-Kupfer z. B. für Erodierelektroden (EDM), Wärmesenken, elektrische Kontakte, Mittel- und Hochspannungsunterbrecher, Schweißelektroden (Kontakt- und Widerstandsschweißen), Auswuchtgewichte und anderes. Der Einsatz als Elektrodenwerkstoff erfolgt häufig, wenn die typischen Kupferkontaktwerkstoffe (z. B. Kupfer-Chrom-Zirkonium, CuCrZr) ihre Leistungsgrenze erreicht haben.

BEARBEITUNG

Die spanende Bearbeitung erfolgt mit Hartmetallwerkzeugen. Die Eigenschaften bei der Zerspanung sind sehr gut. Im Vergleich zu vielen Kupferlegierungen gibt es wegen der hohen Härte und des hohen E-Moduls keine Verformung. Es kann eine sehr gute Oberflächenqualität mit nahezu grat- und ausbruchfreien Kanten erzielt werden.

Wolfram-Kupfer (WCu):	75/25
Chemische Zusammensetzung:	
Kupfer (Cu) [%]	25±2
Wolfram (W) [%]	Rest
Additive [max. %]	1
Physikalische Eigenschaften:	
Dichte [g/cm³]	14,3
Elektrische Leitfähigkeit [% IACS]	41-48
Linearer Ausdehnungskoeffizient [10 ⁻⁶ K ⁻¹]	9,5
Wärmeleitfähigkeit [W/m · K ⁻¹]	190
Mechanische Eigenschaften:	
Härte [HRB]	89-102
E-Modul [GPa]	260
Zugfestigkeit Rm [MPa]	585-654

WICHTIGE EIGENSCHAFTEN UND ANWENDUNGEN

- >> Gute Bearbeitbarkeit
- >> Hohe Dichte
- » Sehr gute Maßbeständigkeit
- » Geringer Ausdehnungskoeffizient
- » Hohe Oberflächengüte
- » Hohe Verschleißbeständigkeit
- » Hohe Wärmeleitfähigkeit
- » Hohe Abbrandfestigkeit